# LEM publications¶

## Foundational¶

A.R. Kerstein. “A Linear-Eddy Model of turbulent scalar transport and Mixing.” Combustion Science and Technology, 60(4-6):391-421 (1988).

A.R. Kerstein. “Linear-Eddy Modeling of turbulent transport .2. Application to shear-layer mixing.” Combustion and Flame, 75(3-4):397-413 (1989).

A.R. Kerstein. “Linear-Eddy Modeling of turbulent transport .3. Mixing and differential molecular-diffusion in round jets.” Journal of Fluid Mechanics, 216:411-435 (1990).

A.R. Kerstein. “Linear-Eddy Modeling of turbulent transport .4. Structure of diffusion flames.” Combustion Science and Technology, 81(1-3):75-96 (1992).

A.R. Kerstein. “Linear-Eddy Modeling of turbulent transport .5. Geometry of scalar interfaces.” Physics of Fluids A-Fluid Dynamics, 3(5,2):1110-1114 (1991).

A.R. Kerstein. “Linear-Eddy Modeling of turbulent transport .6. Miscrostructure of diffusive scalar mixing fields.” Journal of Fluid Mechanics, 231:361-394 (1991).

A.R. Kerstein. “Linear-Eddy Modeling of turbulent transport .7. Finite-rate chemistry and multistream mixing.” Journal of Fluid Mechanics, 240:289-313 (1992).

P.A. McMurtry, S. Menon, A.R. Kerstein. “Linear Eddy Modeling of Turbulent Combustion.” Energy & Fuels, 7(6):817-826 (1993).

## Combustion/Flames¶

B.M. Maxwell, S.A.E.G. Falle, G. Sharpe, M.I. Radulescu. “A compressible-LEM turbulent combustion subgrid model for assessing gaseous explosion hazards.” Journal of Loss Prevention in the Process Industries, 36:460-470 (2015).

B. Maxwell, A. Pekalski, M. Radulescu. “Modelling of the transition of a turbulent shock-flame complex to detonation using the Linear Eddy Model.” Combustion and Flame, 192:340-357 (2018).

V. Sankaran, T.G. Drozda, J.C. Oefelein. “A tabulated closure for turbulent non-premixed combustion based on the Linear Eddy Model.” Proceedings of the Combustion Institute, 32(1):1571-1578 (2009).

T. Lackmann, A.R. Kerstein, M. Oevermann. “A Representative Linear Eddy Model for simulating spray combustion in engines (RILEM).” Combustion and Flame, 193:1-15 (2018).

P.A. McMurthy, S. Menon, A.R. Kerstein. “A Linear Eddy sub-grid Model for turbulent reacting flows: application to hydrogen-air combustion.” Symposium (International) on Combustion, 24(1):271-278 (1992).

M. Oevermann, H. Schmidt, A.R. Kerstein. “Investigation of autoignition under thermal stratification using Linear Eddy Modeling.” Combustion and Flame, 155(3):370-379 (2008).

K. Miki, J. Moder, M-S. Liou. “AUSM scheme: its application to a realistic combustor configuration, the energy efficient engine.” Shock Waves, 29(8,2):1009-1021 (2019).

V. Sankaran, S. Menon. “Structure of premixed turbulent flames in the thin-reaction-zones regime.” Proceedings of the Combustion Institute, 28(1):203-209 (2000).

H. Wei, C. Chen, H. Zhou, W. Zhao, Z. Ren. “Effect of turbulent mixing on the end gas auto-ignition of n-heptane/air mixtures under IC engine-relevant conditions.” Combustion and Flame, 174:25-36 (2016).

T. Echekki. “Stochastic modeling of autoignition in turbulent non-homogeneous hydrogen-air mixtures.” International Journal of Hydrogen Energy, 33(10):2596-2603 (2008).

D.M. Martinez, X. Jiang, C. Moulinec, D.R. Emerson. “Numerical simulations of turbulent jet flames with non-premixed combustion of hydrogen-enriched fuels.” Computers & Fluids, 88:688-701 (2013).

G. Eggenspieler, S. Menon. “Combustion and emission modelling near lean blow-out in a gas turbine tngine.” Progress in Computational Fluid Dynamics, An International Journal 5(6):281 (2005).

G.M. Goldin, S. Menon, W.H. Calhoon Jr. “A Linear Eddy Mixing Model for steady non-premixed turbulent combustion.” In 33rd Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, DOI (1995).

S. Menon, A.R. Kerstein. “Stochastic simulation of the structure and propagation rate of turbulent premixed flames.” Symposium (International) on Combustion, 24(1):443–450 (1992).

H.W. Schenck, J.O.L. Wendt, A.R. Kerstein. “Mixing characterization of transient puffs in a rotary kiln incinerator.” Combustion Science and Technology 116–117(1–6):427–453 (1996).

T. Smith, S. Menon. “Model simulations of freely propagating turbulent premixed flames.” Symposium (International) on Combustion, 26(1):299–306 (1996).

## Turbulent Flows¶

P.E. Desjardin, S.H. Frankel. “Linear-Eddy Modeling of nonequilibrium turbulent reacting flows with nonpremixed reactants.” Combustion and Flame, 109(3):471-487 (1997).

S.M. De Bruyn Kops, J.J. Riley. “Scalar transport characteristics of the Linear-Eddy Model.” Combustion and Flame, 112(1-2):253-260 (1998).

S. Srinivasan, S. Menon. “Linear Eddy mixing Model studies of high Karlovitz Number turbulent premixed flames.” Flow, Turbulence and Combustion, 93(2):189-219 (2014).

M.J. Zimberg, S.H. Frankel, J.P. Gore, Y.R. Sivathanu. “A study of coupled turbulent mixing, soot chemistry, and radiation effects using the Linear Eddy Model.” Combustion and Flame, 113(3):454-469 (1998).

P.A. McMurtry, T.C. Gansauge, A.R. Kerstein, S.K. Krueger. “Linear Eddy simulations of mixing in a homogeneous turbulent flow.” Physics of Fluids A-Fluid Dynamics, 5(4):1023-1034 (1993).

S. Majumdar, B.N. Rajani, D.S. Kulkarni, M.B. Subrahmanya. “Numerical simulation of incompressible turbulent flow using Linear Eddy viscosity-based turbulence Models.” Defence Science Journal, 60(6):614-627 (2010).

E.D. Gonzalez-Juez, A.R. Kerstein. “Multiscale modeling of turbulent atomization: droplet-size sampling.” International Journal of Multiphase Flow, 128:103268 (2020).

F.A. Jaberi, R.S. Miller, C.K. Madnia, P. Givi. “Non-gaussian scalar statistics in homogeneous turbulence.” Journal of Fluid Mechanics, 313:241-282 (1996).

S. Sannan, T. Weydahl, A.R. Kerstein. “Stochastic simulation of scalar mixing capturing unsteadiness and small-scale structure based on mean-flow properties.” Flow, Turbulence and Combustion, 90(1):189-216 (2013).

T.M. Smith, S. Menon. “One-dimensional simulations of freely propagating turbulent premixed flames.” Combustion Science and Technology, 128(1-6):99-130 (1997).

M.A. Cremer, P.A. McMurtry, A.R. Kerstein. “Effects of turbulence length‐scale distribution on scalar mixing in homogeneous turbulent flow.” Physics of Fluids 6(6):2143–2153 (1994).

T. Smith, S. Menon. “Large-Eddy Simulations of turbulent reacting stagnation point flows.” In 35th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, DOI (1997).

M.J. Zimberg, S.H. Frankel, J.P. Gore, Y.R. Sivathanu, “A study of coupled turbulent mixing, soot chemistry, and radiation effects using the Linear Eddy Model,” Combustion and Flame, 113:454-469 (1998).

## Dispersion/Diffusion¶

D. Frederick, J.Y. Chen. “Effects of differential diffusion on predicted autoignition delay times inspired by H-2/N-2 jet flames in a vitiated coflow using the Linear Eddy Model.” Flow, Turbulence and Combustion, 93(2):283-304 (2014).

J.Y. Chen, W.C. Chang. “Modeling differential diffusion effects in turbulent nonreacting/reacting jets with stochastic mixing models.” Combustion Science and Technology, 133(4-6):343-375 (1998).

## Computational Methods/Comparison¶

P.E. Desjardin, S.H. Frankel. “Assessment of turbulent combustion submodels using the Linear Eddy Model.” Combustion and Flame, 104(3):343-357 (1996).

J.S. Ochoa, A. Sanchez-Insa, N. Fueyo. “Subgrid Linear Eddy mixing and combustion Modelling of a turbulent nonpremixed piloted jet flame.” Flow, Turbulence and Combustion, 89(2):295-309 (2012).

V.K. Chakravarthy, S Menon. “Linear Eddy Simulations of Reynolds Number and Schmidt Number effects on turbulent scalar mixing.” Physics of Fluids, 13(2):488-499 (2001).

W.H. Calhoon Jr., A.C. Zambon, B. Sekar, B. Kiel. “Subgrid scale combustion modeling based on stochastic model parameterization.” Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 134:3 (2012).

B. Sen, S. Menon. “Artificial neural networks based chemistry-mixing subgrid model for LES.” In 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, DOI (2009).

## Probability Density Function (PDF)¶

G.M. Goldin. “A priori investigation of the constructed PDF model.” Proceedings of the Combustion Institute, 30(1):785-792 (2005).

H.P. Tsui, M.M. Kamal, S. Hochgreb, W.K. Bushe. “Direct comparison of PDF and scalar dissipation rates between LEM simulations and experiments for turbulent, premixed methane air flames.” Combustion and Flame, 165:208-222 (2016).

G.M. Goldin, S. Menon. “A scalar PDF construction model for turbulent non-premixed combustion.” Combustion Science and Technology, 125(1-6):47-72 (1997).

## Large Eddy Simulation (LES)¶

S. Arshad, B. Kong, A.R. Kerstein, M. Oevermann. “A strategy for large-scale scalar advection in Large Eddy Simulations that use the Linear Eddy sub-grid mixing Model.” International Journal of Numerical Methods for Heat & Fluid Flow, 28(10):2463-2479 (2018).

V.K. Chakravarthy, S. Menon. “Large-Eddy Simulation of turbulent premixed glames in the flamelet regime.” Combustion Science and Technology, 162:175+ (2001).

B.A. Sen, S. Menon. “Linear Eddy mixing based tabulation and artificial neural networks for Large Eddy Simulations of turbulent flames.” Combustion and Flame, 157(1):62-74 (2010).

H. Wei, W. Zhao, L. Zhou, C. Chen, G. Shu. “Large Eddy Simulation of the low temperature ignition and combustion processes on spray flame with the Linear Eddy Model.” Combustion Theory and Modelling, 22(2):237-263 (2018).

G. Xiao, M. Jia, T. Wang. “Large Eddy Simulation of n-heptane spray combustion in partially premixed combustion regime with Linear Eddy Model.” Energy, 97:20-35 (2016).

S. Arshad, E. Gonzalez-Juez, A. Dasgupta, S. Menon, M. Oevermann. “Subgrid reaction-diffusion closure for Large Eddy Simulations using the Linear-Eddy Model.” Flow, Turbulence and Combustion, 103(2):389-416 (2019).

V.K. Chakravarthy, S. Menon. “Subgrid modeling of turbulent premixed flames in the flamelet regime.” Flow, Turbulence and Combustion, 65(2):133-161 (2000).

S. Li, Y. Zheng, D. Mira, S. Li, M. Zhu, X. Jiang. “A Large-Eddy Simulation-Linear-Eddy Model study of preferential diffusion processes in a partially premixed wwirling combustor with synthesis gases.” Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 139:3 (2017).

D.M. Martinez, X. Jiang, C. Moulinec, D.R. Emerson. “Numerical assessment of subgrid scale models for scalar transport in Large-Eddy Simulations of hydrogen-enriched fuels.” International Journal of Hydrogen Energy, 39(14):7173-7189 (2014).

K.A. Kemenov, W.H. Calhoon Jr. “A study of strain rate effects for turbulent premixed flames with application to LES of a gas turbine combustor model.” Flow, Turbulence and Combustion, 94(4):731-765 (2015).

S. Li, S. Li, D. Mira, M. Zhu, X. Jiang. “Investigation of dilution effects on partially premixed swirling syngas flames using a LES-LEM approach.” Journal of the Energy Institute, 91(6):902-915 (2018).

H. Wei, J. Yu, L. Zhou, W. Zhao, C. Chen. “The LES and LEM study of end-gas auto-ignition mechanism in a downsized spark ignition engine: effect of turbulence.” Combustion Science and Technology, 191(11):1917-1941 (2019).

V. Sankaran, S. Menon. “Subgrid combustion modeling of 3-D premixed flames in the thin-reaction-zone regime.” Proceedings of the Combustion Institute, 30(1):575–582 (2005).

T. Smith, S. Menon. “Subgrid combustion modeling for premixed turbulent reacting flows.” In 36th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, DOI (1998).

V. Sankaran, S. Menon. “LES of scalar mixing in supersonic mixing layers.” Proceedings of the Combustion Institute, 30(2):2835–2842 (2005).

## Reactions/Chemistry¶

T. Lackmann, A. Nygren, A. Karlsson, M. Oevermann. “Investigation of turbulence-chemistry interactions in a heavy-duty diesel engine with a Representative Interactive Linear Eddy Model.” International Journal of Engine Research, 21(8):1469-1479 (2020).

S.H. Frankel, P.A. McMurtry, P. Givi. “Linear Eddy Modeling of reactant conversion and selectivity in turbulent flows.” AIChE Journal, 41(2):258-266 (1995).

S.H. Frankel, C.K. Madnia, P.A. McMurtry, P. Givi. “Binary scalar mixing and reaction in homogeneous turbulence - some Linear Eddy Model results.” Energy & Fuels, 7(6):827-834 (1993).

L. Lu, P.M. Najt, T. Kuo, V. Sankaran, J. Oefelein. “A fully integrated Linear Eddy and chemistry agglomeration method with detailed chemical kinetics for studying the effect of stratification on HCCI combustion.” Fuel, 105:653-663 (2013).

## Meteorology¶

S.K. Krueger. “Linear Eddy Modeling of entrainment and mixing in stratus clouds.” Journal of the Atmospheric Sciences, 50(18):3078-3090 (1993).

C.W. Su, S.K. Krueger, P.A. McMurtry, P.H. Austin. “Linear Eddy Modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds.” Atmospheric Research, 47-48:41-58 (1998).

F. Hoffmann, G. Feingold. “Entrainment and mixing in stratocumulus: effects of a new explicit subgrid-scale scheme for Large-Eddy Simulations with particle-based microphysics.” Journal of the Atmospheric Sciences, 76(7):1955-1973 (2019).

F. Hoffmann. “Effects of entrainment and mixing on the Wegener-Bergeron-Findeisen Process.” Journal of the Atmospheric Sciences, 77(6):2279-2296 (2020).

F Hoffmann, T. Yamaguchi, G. Feingold. “Inhomogeneous mixing in Lagrangian cloud models: effects on the production of precipitation embryos.” Journal of the Atmospheric Sciences, 76(1):113-133 (2019).

S.K. Krueger, C.W. Su, P.A. McMurtry. “Modeling entrainment and finescale mixing in cumulus clouds.” Journal of the Atmospheric Sciences, 54(23):2697–2712 (1997).

## Other¶

S. Sannan, T. Weydahl, A.R. Kerstein. “Stochastic simulation of scalar mixing capturing unsteadiness and small-scale structure based on mean-flow properties.” Flow, Turbulence and Combustion, 90(1):189-216 (2013).

S.E. Woosley, A.R. Kerstein, V. Sankaran, A.J. Aspden, F.K. Roepke. “Type Ia supernovae: calculations of turbulent flames using the Linear Eddy Model.” Astrophysical Journal, 704(1):255-273 (2009).

C. Schroedinger, C.O. Paschereit, M. Oevermann. “Numerical studies on the impact of equivalence ratio oscillations on lean premixed flame characteristics and emissions.” Combustion Science and Technology, 186(10-11):1392-1409 (2014).