ODT Publications#

Foundational#

  • A.R. Kerstein, “One-Dimensional Turbulence: Model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows,” Journal of Fluid Mechanics, 392:277-334 (1999).

  • A.R. Kerstein, “One-Dimensional Turbulence: vector formulation and application to free shear flows,” Journal of Fluid Mechanics, 447:85-109 (2001).

  • D.O. Lignell, A.R. Kerstein, G. Sun, E.I. Monson, “Mesh adaption for efficient multiscale implementation of One-Dimensional Turbulence,” Theoretical and Computational Fluid Dynamics, 27(3):273-295 (2013). Accepted paper ©.

  • D.O. Lignell, V.B. Lansinger, J.A. Medina Méndez, M. Klein, A.R. Kerstein, H. Schmidt, M. Fistler, M. Oevermann, “One-Dimensional Turbulence modeling for cylindrical and spherical flows: model formulation and application,” Theoretical and Computational Fluid Dynamics, 32(4):495-520 (2018). Accepted Paper ©.


Channel and pipe flows#

  • R.C. Schmidt, A.R. Kerstein, R. McDermott, “ODTLES: A multi-scal model for 3D turbulent flow based on One-Dimensional Turbulence modeling,” Computer Methods in Applied Mechanics and Engineering, 199:865-880 (2010).

  • F.T. Schulz, C. Glawe, H. Schmidt, A. R. Kerstein, “Toward modeling of CO2 multi-phase flow patterns using a stochastic multi-scale approach,” Environmental Earth Sciences, 70:3739-3748 (2013).

  • J.A. Medina Méndez, H. Schmidt, D.O. Lignell, “Application of the One-Dimensional Turbulence model to incompressible channel and pipe flow,” submitted to the Journal of Applied Mathematics and Mechanics, May 2019, Preprint.

  • J.A. Medina Méndez, M. Klein, H. Schmidt, “One-dimensional turbulence investigation of variable density effects due to heat transfer in a low Mach number internal air flow,” International Journal of Heat Fluid Flow, 80:108481 (2019).

  • J.A. Medina Méndez, M. Klein, H. Schmidt, “The One-Dimensional Turbulence Aspects of Internal Forced Convective Flows,” Proc. WCCM ECCOMAS 2020, 2021. DOI: https://doi.org/10.23967/wccm-eccomas.2020.338.

  • M. Klein, P.-Y. Tsai, and H. Schmidt. “Stochastic modeling and large-eddy simulation of heated concentric coaxial pipes,” In book: New Results in Numerical and Experimental Fluid Mechanics XIV - Contributions to the 23rd STAB/DGLR Symposium Berlin, Germany 2022, edited by A. Dillmann, G. Heller, E. Krämer, C. Wagner, and J. Weiss. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 154:435–444, Springer, Cham, 2024. Preprint, arXiv. Preprint, BTU webpage.

  • J. A. Medina Mendez, and H. Schmidt. “Towards the evaluation of heat and mass transfer in pipe flows with cocurrent falling films using One‐Dimensional Turbulence,” Proc. Appl. Math. Mech., 23:e202200271, 2023.

  • P.-Y. Tsai, H. Schmidt, and M. Klein. “Investigating Reynolds number effects in turbulent concentric coaxial pipe flow using stochastic one-dimensional turbulence modeling,” Proc. Appl Math. Mech., 23:e202300167, 2023, (open access).

  • P.-Y. Tsai, H. Schmidt, and M. Klein. “Modeling simultaneous momentum and passive scalar transfer in turbulent annular Poiseuille flow,” Proc. Appl Math. Mech., 22:e202200272, 2023, (open access).


Compressible flows#

  • C.P. Chen, J.H. Liang, T.Y. Gao, X.S. Wu, W.D. Zhao, L. Zhang, “Conservative compressible one-dimensional turbulence formulation and application to high-Reynolds-number compressible turbulent channel flows,” Physics of Fluids, 34:65121 (2022).

  • T.Y. Gao, H. Schmidt, M. Klein, J.H. Liang, M.B. Sun, C.P. Chen, and Q.D. Guan, “One-dimensional turbulence modeling of compressible flows. I. Conservative Eulerian formulation and application to supersonic channel flow,” Physics of Fluids, 35:35115 (2023).

  • T.Y. Gao, H. Schmidt, M. Klein, J.H. Liang, M.B. Sun, C.P. Chen, and Q.D. Guan, “One-dimensional turbu- lence modeling of compressible flows II. Full compressible modification and application to shock–turbulence interaction,” Physics of Fluids 35:35116 (2023).


Passive scalars and turbulent mixing#

  • M. Klein, H. Schmidt, “Stochastic Modeling of Passive Scalar Transport in Turbulent Channel Flows at High Schmidt Numbers,” Proc. TSFP10, 2017. URL.

  • V. Giddey, D.W. Meyer, P. Jenny. “Modeling Three-Dimensional Scalar Mixing with Forced One-Dimensional Turbulence,” Physics of Fluids, 30:12 (2018).

  • M. Klein, C. Zenker, H. Schmidt, “Small-scale resolving simulations of the turbulent mixing in confined planar jets using one-dimensional turbulence,” Chemical Engineering Science, 204:186-202 (2019).

  • M. Klein, C. Zenker, K. Hertha, H. Schmidt, “Modeling One and Two Passive Scalar Mixing in Turbulent Jets Using One-Dimensional Turbulence,” Proc. WCCM ECCOMAS 2020, 2021. DOI.

  • M. Klein, H. Schmidt, “Stochastic Modeling of Passive Scalars in Turbulent Channel Flows: Predictive Capabilities of One-Dimensional Turbulence,” In: A. Dillmann et al. (Eds.), New Results in Numerical and Experimental Fluid Mechanics XIII, volume 151, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer Nature, Cham, 2021, pp. 47-57. STAB/DGLR Symposium 2020. Preprint.

  • M. Klein, C. Zenker, T. Starick, and H. Schmidt. “Stochastic modeling of multiple scalar mixing in a three-stream concentric coaxial jet based on one-dimensional turbulence,” Int. J. Heat Fluid Flow, 104:109235, 2023 (open access).

  • M. Klein, T. Starick, C. Zenker, J. A. Medina Méndez, and Heiko Schmidt. “Reduced order stochastic modeling of turbulent mixing based on conservative baker’s map.” In: Proc. 14th Int. ERCOFTAC Sympos. Eng. Turbul. Model. Measurem. (ETMM14), pp. 613–617, 2023. (Follow the link entitled “Download” to get the full proceedings.)

  • M. Klein, C. Zenker, T. Starick, and H. Schmidt. “Stochastic modeling of three-scalar mixing in a coaxial jet using one-dimensional turbulence,” In: Proc. TSFP-12, Osaka (online), Japan, July 2022. Session 13C, Jets II, ID 208.

  • M. Klein, H. Schmidt, and D. O. Lignell. “Stochastic modeling of surface scalar-flux fluctuations in turbulent channel flow using one-dimensional turbulence,” Int. J. Heat Fluid Flow, 93:108889, 2022. In: Special Issue “Wall-bounded Reactive Flows ‘21”. Preprint: arXiv:2111.15359.


Particle flows#

  • Y. Wu, P. Smith, J. Thornock, G. Yue, J. Zhang. “A novel method for prediction of particle dispersion in a planar jet using ODT model.” AIChE Annual Meeting, Conference Proceedings, URL (2007).

  • J.R. Schmidt, J.O.L. Wendt, A.R. Kerstein. “Non-equilibrium wall deposition of inertial particles in turbulent flow.” Journal of Statistical Physics, 137(2):233-257 (2009).

  • G. Sun, D.O. Lignell, J.C. Hewson, C. Gin, “Particle dispersion in homogeneous turbulence using the One-Dimensional Turbulence model,” Physics of Fluids, 26:103301 (2014). Published paper ©.

  • G. Sun, J.C. Hewson, D.O. Lignell, “Evaluation of stochastic particle dispersion modeling in turbulent round jets,” International Journal of Multiphase Flow, 89:108-122 (2017). Accepted Paper ©

  • M. Fistler, A.R. Kerstein, S. Wunsch, M. Oevermann. “Turbulence modulation in particle-laden stationary homogeneous shear turbulence using One-Dimensional Turbulence.” Physical Review Fluids, 5:124303 (2020).

  • M. Fistler, A.R. Kerstein, S. Wunsch, M. Oevermann. “Turbulence modulation in particle-laden stationary homogeneous shear turbulence using One-Dimensional Turbulence.” Physical Review Fluids, 5:124303 (2020).


Buoyant flows#

  • T.D. Dreeben, A.R. Kerstein. “Simulation of vertical slot convection using `One-Dimensional Turbulence’.” International Journal of Heat and Mass Transfer, 43(20):3823-3834 (2000).

  • S. Wunsch, A.R. Kerstein, “A stochastic model for high-Rayleigh-number thermal convection,” Journal of Fluid Mechanics, 528:173-205 (2005).

  • H. Shihn, P.E. DesJardin. “Near-wall modeling of an isothermal vertical wall using One-Dimensional Turbulence.” International Journal of Heat and Mass Transfer, 50(7-8):1314-1327 (2007).

  • A.J. Ricks, J.C. Hewson, A.R. Kerstein, J.P. Gore, S.R. Tieszen, W.T. Ashurst. “A spatially developing One-Dimensional Turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames.” Combustion Science and Technology, 182(1):60–101 (2010).

  • E.D. Gonzalez-Juez, A.R. Kerstein, L.H. Shih. “Vertical mixing in homogeneous sheared stratified turbulence: a One-Dimensional-Turbulence study.” Physics of Fluids, 23:5 (2011).

  • E.D. Gonzalez-Juez, A.R. Kerstein, D.O. Lignell, “Reactive Rayleigh-Taylor turbulent mixing: a One-Dimensional Turbulence study,” Geophysical and Astrophysical Fluid Dynamics, 107:506-525 (2013). Accepted paper ©.

  • M. Klein, H. Schmidt, D.O. Lignell. “Map-based modeling of high-Rayleigh- number turbulent convection in planar and spherical confinements,” Proc. Conf. Model. Fluid Flow (CMFF’18), J. Vad (Ed.), 2018. ISBN: 978-963313297-5. Accepted paper URL.

  • M. Klein, H. Schmidt, “Investigating thermal convection at low Prandtl numbers using one-dimensional turbulence,” Proc. TSFP11, 2019. URL.

  • S. R. G. Polasanapalli, M. Klein, and H. Schmidt. “Towards stochastic subgrid-scale modeling of turbulent thermal convection in an under-resolved off-lattice Boltzmann method.” Proc. Appl. Math. Mech. 23:e202300223, 2023, (open access).


Electrohydrodynamically (EHD) enhanced flows#

  • J.A. Medina Méndez, H. Schmidt, U. Riebel, “Towards a One-Dimensional Turbulence Approach for Electrohydrodynamic Flows,” Proc. TSFP11, 2019. [URL](http://www.tsfp- conference.org/proceedings/2019/265.pdf).

  • J.A. Medina Méndez, H. Schmidt, C. Bacher, U. Riebel, “Electrohydrodynamic‐enhanced internal pipe flows from a One‐Dimensional Turbulence perspective,” Proc. Appl. Math. Mech., 20:e202000132 (2020).

  • M. Klein, H. Schmidt, “Towards a stochastic model for electrohydrodynamic turbulence with application to electrolytes,” Proc. Appl. Math. Mech., 20:e202000128 (2020).

  • H. Schmidt, J.A. Medina Méndez, M. Klein, “EHD turbulence in channel flows with inhomogeneous electrical fields: a one-dimensional turbulence study,” Proc. WCCM ECCOMAS 2020, 2021. DOI.

  • M. Klein, J. A. Medina Méndez, and H. Schmidt. “Stochastic modeling of electrohydrodynamically enhanced drag in one-way and fully coupled turbulent Poiseuille and Couette flow,” Technische Mechanik, 43(1):111–127, 2023, (open access).

  • M. Klein, J. A. Medina Méndez, and H. Schmidt. “Modeling electrohydrodynamically enhanced drag in channel and pipe flows using one-dimensional turbulence,” In: Janos Vad (Ed.), Proc. Conf. Model. Fluid Flow (CMFF’22), 18:82–91, CMFF22-015, 2022. University of Technology and Economics, Department of Fluid Mechanics, Budapest, Hungary. ISBN 978-9634218814.

  • M. Klein, and H. Schmidt. “Investigating Schmidt number effects in turbulent electroconvection using one-dimensional turbulence,” Proc. Appl. Math. Mech., 21:e202100147, 2021.

  • J. A. Medina Mendez, C. Bacher, U. Riebel, and H. Schmidt. “Electrohydrodynamically-enhanced drag in a vertical pipe-flow with a concentric electrode: A One-Dimensional Turbulence study,” European Journal of Mechanics - B/Fluids, 95:240-251, 2022.


Fire#

  • H. Shihn, P.E. DesJardin. “Simulation of vertical wall fires with One-Dimensional Turbulence modeling.” Spring Technical Meeting, The Combustion Institute/Canadian Section, Ontario, Canada, URL (2004).

  • A.J. Ricks, J.C. Hewson, A.R. Kerstein, J.P. Gore, S.R. Tieszen, W.T. Ashurst. “A spatially developing One-Dimensional Turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames.” Combustion Science and Technology, 182(1):60-101 (2010).

  • J. An, Y. Jiang, M. Ye, R. Qiu. “One-Dimensional Turbulence simulations and chemical explosive mode analysis for flame suppression mechanism of hydrogen/air flames.” International Journal of Hydrogen Energy, 38(18):7528-7538 (2013).

  • Y. Jiang, J. An, R. Qiu, Y. Hu, and N. Zhu. “Improved understanding of fire suppression mechanism with an idealized extinguishing agent.” International Journal of Thermal Sciences, 64:22-28 (2013).

  • E.I. Monson, D.O. Lignell, M.A. Finney, C. Werner, Z. Jozefik, A.R. Kerstein, R.S. Hintze, “Simulation of an ethylene wall fire using the spatially-evolving One-Dimensional Turbulence model,” Fire Technology, Special Issue on Validation and Fire Modelling, 52(1):167-196 (2016). Accepted paper ©.


Combustion#

  • J.C. Hewson, A.R. Kerstein, “Stochastic simulation of transport and chemical kinetics in turbulent CO/H2/N2 flames,” Combustion Theory and Modelling, 5:669-697 (2001).

  • J.C. Hewson, A.R. Kerstein, “Local extinction and reignition in nonpremixed turbulent CO/H2/N2 jet flames,” Combustion Science and Technology, 174:35-66 (2002).

  • B. Ranganath, T. Echekki. “One-Dimensional Turbulence-based closure with extinction and reignition.” Combustion and Flame, 154(1-2):23-46 (2008).

  • S. Cao, T. Echekki. “A low-dimensional stochastic closure model for combustion large-eddy simulation.” Journal of Turbulence, 9(2):1-35 (2008).

  • B. Ranganath, T. Echekki. “ODT closure with extinction and reignition in piloted methane-air jet diffusion flame.” Combustion Science Technology, 181:570–596 (2009).

  • N. Punati, J.C. Sutherland, A.R. Kerstein, E.R. Hawkes, J.H. Chen, “An evaluation of the One-Dimensional Turbulence model: comparison with direct numerical simulations of CO/H2 Jets with extinction and reignition,” Proceedings of the Combustion Institute, 33:1515-1522 (2011).

  • D.O. Lignell, D.S. Rappleye, “One-Dimensional Turbulence simulation of flame extinction and reignition in planar ethylene jet flames,” Combustion and Flame, 159:2930-2943 (2012). Accepted Paper ©

  • D.O. Lignell, G.C. Fredline, and A.D. Lewis “Comparison of One-Dimensional Turbulence and direct numerical simulation of soot formation and transport in a nonpremixed ethylene jet flame,” Proceedings of the Combustion Institute, DOI 10.1016/j.proci.2014.05.046 (2014). Accepted paper ©.

  • L. Zhuo, Y. Jiang, R. Qiu, J. An, W. Xu. “Effects of fuel-side N-2, CO2, H2O dilution on combustion characteristics and NOx formation of syngas turbulent nonpremixed jet flames.” Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 136:6 (2014).

  • H. Mirgolbabaei, T. Echekki. “The reconstruction of thermo-chemical scalars in combustion from a reduced set of their principal components.” Combustion and Flame, 162(5):1650-1652 (2015).

  • T. Echekki, H. Mirgolbabaei. “Principal component transport in turbulent combustion: a Posteriori analysis.” Combustion and Flame, 162(5):1919-1933 (2015).

  • B. Goshayeshi, J.C. Sutherland, “Prediction of oxy-coal flame stand-off using high-fidelity thermochemical models and the One-Dimensional Turbulence model,” Proceedings of the Combustion Institute, 35:2829-2837 (2015).

  • T. Echekki, S.E. Ahmed. “Autoignition of n-heptane in a turbulent co-flowing jet.” Combustion and Flame, 162(10):3829-3846 (2015)

  • B. Goshayeshi, J.C. Sutherland. “Prediction of oxy-coal flame stand-off using high-fidelity thermochemical models and the One-Dimensional Turbulence model.” Proceedings of the Combustion Institute, 35(3):2829-2837 (2015).

  • N. Punati, H. Wang, E.R. Hawkes, J.C. Sutherland, “One-dimensional modeling of turbulent premixed jet flames-comparison to DNS,” Flow, Turbulence and Combustion, 97:913–930 (2016).

  • L. Wang, Y. Jiang, L. Pan, Y. Xia, R. Qiu. “Lagrangian investigation and chemical explosive mode analysis of extinction and re-ignition in H-2/CO/N-2 syngas non-premixed flame.” International Journal of Hydrogen Energy, 41(8):4820-4830 (2016).

  • Z. Jozefik, A.R. Kerstein, H. Schmidt. “Simulation of shock-turbulence interaction in non-reactive flow and in turbulent deflagration and detonation regimes using One-Dimensional Turbulence.” Combustion and Flame, 164:53-67 (2016).

  • A. Abdelsamie, D.O. Lignell, D. Thevenin, “Comparison between ODT and DNS for ignition occurrence in turbulent premixed jet combustion: Safety-relevant applications,” Zeitschrift Für Physikalische Chemie, 231(10):1709-1735, DOI: 10.1515/zpch-2016-0902 (2017). Published Paper. The final publication is available at www.degruyter.com. ©.

  • L. Wang, Y. Jiang, R. Qiu. “Chemical explosive mode analysis for local reignition scenarios in H-2/N-2 turbulent diffusion flames.” Energy & Fuels, 31(9):9939-9949 (2017).

  • T. Echekki, S.F. Ahmed. “Turbulence effects on the autoignition of DME in a turbulent co-flowing jet.” Combustion and Flame, 178:70-81 (2017).

  • J.A Medina Méndez, H. Schmidt, F. Mauss, Z. Jozefik. “Constant volume n-heptane autoignition using One-Dimensional Turbulence.” Combustion and Flame, 190:388-401 (2018).

  • T. Starick, J. A. Medina Méndez, H. Schmidt, “One-Dimensional Turbulence simulations for reactive flows in open and closed systems,” Technische Mechanik, 39:162-174 (2019).

  • T. Starick, D. O. Lignell, and H. Schmidt. “Stochastic Modeling of a Lifted Methane/Air Jet Flame with Detailed Chemistry,” Proc. Appl. Math. Mech., 20:e202000316, 2020.

  • W. Yang, B. Liu, H. Zhang, Y. Zhang, Y. Wu, J. Lyu. “Prediction improvements of ignition characteristics of isolated coal particles with a one-dimensional transient model.” Proceedings of the Combustion Institute, 38(3):4083-4089 (2021).


Code#

  • V.B. Stephens, D.O. Lignell, “One-Dimensional Turbulence (ODT): computationally efficient modeling and simulation of turbulent flows,” SoftwareX, 13:100641 (2020), Paper.


Fuel#

  • A. Movaghar, M. Linne, M. Oevermann, F. Meiselbach, H. Schmidt, A.R. Kerstein. “Numerical investigation of turbulent-jet primary breakup using One-Dimensional Turbulence.” International Journal of Multiphase Flow, 89:241-254 (2017).

  • K.G. Gupta, T. Echekki. “One-Dimensional Turbulence model simulations of autoignition of hydrogen/carbon monoxide fuel mixtures in a turbulent jet.” Combustion and Flame, 158(2):327-344 (2011).

  • B.D. Gowda, T. Echekki. “Complex injection strategies for hydrogen-fueled HCCI engines.” Fuel, 97:418-27 (2012).

  • B.D. Gowda, T. Echekki. “One-Dimensional Turbulence simulations of hydrogen-fueled HCCI combustion.” International Journal of Hydrogen Energy, 37(9):7912-7924 (2012).

  • T. Echekki, K.G. Gupta. “Hydrogen autoignition in a turbulent jet with preheated co-flow air.” International Journal of Hydrogen Energy, 34(19):8352-8377 (2009).

  • B. Ranganath, T. Echekki. “ODT closure with extinction and reignition in piloted methane-air jet diffusion flames.” Combustion Science and Technology, 181(4):570-596 (2009).

  • S. Zhang, T. Echekki. “Stochastic modeling of finite-rate chemistry effects in hdrogen-air turbulent jet diffusion flames with helium dilution.” International Journal of Hydrogen Energy, 33(23):7295-7306 (2008).

  • B. Ranganath, T. Echekki. “One-Dimensional Turbulence-based closure for turbulent non-premixed flames.” Progress in Computational Fluid Dynamics, 6(7):409-418 (2006).

  • T. Echekki, A.R. Kerstein, T.D. Dreeben, J.Y. Chen. “`One-Dimensional Turbulence’ simulation of turbulent jet diffusion flames: model formulation and illustrative applications.” Combustion and Flame, 125(3):1083-1105 (2001).


Boundary Layers#

  • M.M. Fragner, H. Schmidt. “Investigating asymptotic suction boundary layers using a One-Dimensional Stochastic Turbulence model.” Journal of Turbulence, 18(10):899-928 (2017).

  • Rakhi, M. Klein, J. A. Medina Méndez, H. Schmidt, “One-dimensional turbulence modelling of incompressible temporally developing turbulent boundary layers with comparison to DNS,” Journal of Turbulence, 20:506-543 (2019).

  • Rakhi, D.O. Lignell, H. Schmidt, “Investigating spatially developing turbulent boundary layers with uniform blowing using a One-Dimensional stochastic Turbulence model,” submitted to Flow, Turbulence and Combustion, May 2020, Preprint.

  • Rakhi, H. Schmidt, “One-dimensional turbulence: application to incompressible spatially developing turbulent boundary layers,” International Journal of Heat and Fluid Flow, 85:108626 (2020).

  • C.P. Chen, J.H. Liang, Q.D. Guan, and T.Y. Gao, “Conservative compressible one-dimensional turbulence method and its application in supersonic scalar mixing layer,” Acta Aeronautica et Astronautica Sinica. 42:726364 (2021).


Meteorology#

  • A.R. Kerstein, S. Wunsch. “Simulation of a stably stratified atmospheric boundary layer using One-Dimensional Turbulence.” Boundary-Layer Meteorology, 118(2):325-356 (2006).

  • C.K. Kim, S.S. Yum. “A numerical study of sea-fog formation over cold sea surface using a One-Dimensional Turbulence model coupled with the weather research and forecasting model.” Boundary-Layer Meteorology, 143(3):481-505 (2012).

  • H. Schmidt, A.R. Kerstein, S. Wunsch, R. Nedelec, B.J. Sayler. “Analysis and numerical simulation of a laboratory analog of radiatively induced cloud-top entrainment.” Theoretical and Computational Fluid Dynamics, 27(3-4):377-395 (2013).

  • S.N. Stechmann. “Multiscale eddy simulation for moist atmospheric convection: preliminary Investigation.” Journal of Computational Physics, 271:99-117 (2014).

  • B. Goger, M.W. Rotach, A. Gohm, O. Fuhrer, I. Stiperski, A.A.M. Holtslag. “The impact of three-dimensional effects on the simulation of turbulence kinetic energy in a major alpine valley.” Boundary-Layer Meteorology, 168(1):1-27 (2018).

  • L. S. Freire, and M. Chamecki. “A one-dimensional stochastic model of turbulence within and above plant canopies, Agr. Forest Meteorol., 250–251:9–23, 2018.

  • M. Klein, Roland E. Maier, and H. Schmidt. “Stochastic modeling of transient neutral and stably-stratified Ekman boundary layers,” Proc. Appl. Math. Mech., 21:e202100146, 2021.

  • M. Klein, and H. Schmidt. “Exploring stratification effects in stable Ekman boundary layers using a stochastic one-dimensional turbulence model,” Adv. Sci. Res., 19:117–136, 2022, (open access).

  • L. S. Freire. “Large-eddy simulation of the atmospheric boundary layer with near-wall resolved turbulence,” Bound.-Lay. Meteorol., 184:25–43, 2022.

  • M. Klein, and H. Schmidt. “Capturing features of turbulent Ekman–Stokes boundary layers with a stochastic modeling approach,” Adv. Sci. Res., 20:55–64, 2023, (open access).


Environment/Ecology#

  • A.R. Kerstein. “One-Dimensional Turbulence Part 2. Staircases in double-diffusive convection.” Dynamics of Atmospheres and Oceans, 30(1):25-46 (1999).

  • K. Makinson. “Modeling tidal current profiles and vertical mixing beneath Filchner-Ronne Ice Shelf, Antarctica.” Journal of Physical Oceanography, 32(1):202-215 (2002).

  • U.T. Skielka, J. Soares, A.P. de Oliveira. “Study of the equatorial Atlantic Ocean mixing layer using a One-Dimensional Turbulence model.” Brazilian Journal of Oceanography, 58:57-69 (2010).

  • S. Wunsch, A.R. Kerstein. “A model for layer formation in stably stratified turbulence.” Physics of Fluids, 13(3):702-712 (2010).

  • E.D. Gonzalez-Juez, A.R. Kerstein, D.O. Lignell, “Fluxes across double-diffusive interfaces: a one-dimensional turbulence study,” Journal of Fluid Mechanics, 677:218-254 (2011). Accepted paper ©.

  • T. Ling, M. Xu, X.Z. Liang, J.X.L. Wang, Y. Noh. “A multilevel ocean mixed layer model resolving the Diurnal Cycle: development and validation.” Journal of Advances in Modeling Earth Systems, 7(4):1680-1692 (2015).

  • E.R. Maure, J. Ishizaka, H. Aiki, Y. Mino, N. Yoshie, J.I. Goes, H.R. Gomes, H. Tomita. “One-Dimensional Turbulence-ecosystem model reveals the triggers of the spring bloom in mesoscale eddies.” Journal of Geophysical Research-Oceans, 123(9):6841-6860 (2018).

  • L.S. Freire, M. Chamecki. “A One-Dimensional stochastic model of Turbulence within and above plant canopies.” Agricultural and Forest Meteorology, 250:9-23 (2018).

  • M.Klein, H.Schmidt, A stochastic modeling strategy for intermittently unstable Ekman boundary layers,” Proceedings in Applied Mathematics and Mechanics, 2021, https://doi.org/10.1002/pamm.202000127.


Computational Approach/Comparison#

  • A.R. Kerstein. “One-Dimensional Turbulence: a new approach to high-fidelity subgrid closure of turbulent flow simulations.” Computer Physics Communications, 148(1):1-16 (2002).

  • W.T. Ashurst, A.R. Kerstein, L.M. Pickett, J.B. Ghandhi. “Passive scalar mixing in a spatially developing shear layer: comparison of One-Dimensional Turbulence simulations with experimental results.” Physics of Fluids, 15(2):579-582 (2003).

  • M. Okamura, H. Mori. “Time correlation functions in a similarity approximation for One-Dimensional Turbulence.” Physical Review E, 79:5,2 (2009).

  • J.C. Sutherland, N. Punati, A.R. Kerstein. “A unified approach to the various formulations of the One-Dimensional Turbulence model.” Technical Report ICSE100101, The University of Utah Institute for Clean and Secure Energy, URL (2010).

  • N. Punati, J.C. Sutherland. “Application of an Eulerian One-Dimensional Turbulence model to simulation of turbulent jets.” U.S. Joint Sections of the Combustion Institute, Ann Arbor, MI, URL (2009).

  • H. Mirgolbabaei, T. Echekki, N. Smaoui. “A nonlinear principal component analysis approach for turbulent combustion composition space.” International Journal of Hydrogen Energy, 39(9):4622-4633 (2014).

  • B. Goshayeshi, J.C. Sutherland. “A comparative study of thermochemistry models for oxy-coal combustion simulation.” Combustion and Flame, 162(10):4016-4024 (2015).

  • Z. Jozefik, A.R. Kerstein, H. Schmidt, S. Lyra, H. Kolla, J.H. Chen. “One-Dimensional Turbulence modeling of a turbulent counterflow flame with comparison to DNS.” Combustion and Flame, 162(8):2999-3015 (2015).

  • A.W. Abboud, B.B. Schroeder, T. Saad, S.T. Smith, D.D. Harris, D.O. Lignell. “A numerical comparison of precipitating turbulent flows between Large-Eddy Simulation and One-Dimensional Turbulence.” AIChE Journal, 61(10):3185-3197 (2015).

  • H. Grosshans, A. Movaghar, L. Cao, M. Oevermann, R.Z. Szasz, L. Fuchs. “Sensitivity of VOF simulations of the liquid jet breakup to physical and numerical parameters.” Computers & Fluids, 136:312-323 (2016).

  • N. Punati, H. Wang, E.R. Hawkes, J.C. Sutherland. “One-Dimensional modeling of Turbulent premixed jet Fflames - comparison to DNS.” Flow Turbulence and Combustion, 97(3):913-930 (2016).

  • R. Ranade, T. Echekki. “A framework for data-based turbulent combustion closure: A Priori validation.” Combustion and Flame, 206:490-505 (2019).

  • J. A. Medina Mendez, M. González, F. Baena-Moreno, and H. Arellano-Garcia. “CO2 methanation: on the modeling of reacting laminar flows in structured Ni/MgAl2O4 catalysts,” Journal of Physics: Conference Series, 2367:012015, 2022.


LES-ODT#

  • R.C. Schmidt, A.R. Kerstein, S. Wunsch, V. Nilsen. “Near-wall LES closure based on One-Dimensional Turbulence modeling.” Journal of Computational Physics, 186:317–355 (2003).

  • R.J. McDermott, A.R. Kerstein, R.C. Schmidt, P.J. Smith. “The ensemble mean limit of the One-Dimensional Turbulence model and application to residual stress closure in finite volume Large-Eddy Simulation.” Journal of Turbulence, 6:N31 (2005).

  • T. Echekki, J. Park. “The LES-ODT model for turbulent premixed flames.” AIAA-2010-0207, The 48th AIAA Aerospace Sciences Meeting, Orlando, FL, DOI (2010).

  • J. Park, T. Echekki. “LES-ODT study of turbulent premixed interacting flames.” Combustion and Flame, 159(2):609-620 (2012).

  • H. Mirgolbabaei, T. Echekki. “A novel principal component analysis-based acceleration scheme for LES-ODT: an a Priori study.” Combustion and Flame, 160(5):898-908 (2013).

  • S.B. Rejeb and T. Echekki. “Thermal radiation modeling using the LES-ODT framework for turbulent combustion flows.” International Journal of Heat and Mass Transfer, 104:1300-1316 (2017).

  • A.F. Hoffie, T. Echekki. “A coupled LES-ODT model for spatially-developing turbulent reacting shear layers.” International Journal of Heat and Mass Transfer, 127:458-473 (2018).

  • Y. Fu, T. Echekki. “Upscaling and downscaling approaches in LES-ODT for turbulent combustion flows.” International Journal for Multiscale Computational Engineering, 16(1):45-76 (2018).

  • C. Glawe, J. A. Medina Méndez, H. Schmidt, “IMEX based Multi-Scale Time Advancement in ODTLES,” ZAMM, 98:1907-1923 (2018).

  • J. A. Medina Mendez, C. Glawe, T. Starick, M. S. Schöps, and H. Schmidt. “IMEX-ODTLES: A multi-scale and stochastic approach for highly turbulent flows,” Proc. Appl. Math. Mech., 19:e201900433, 2019.

  • L. S.Freire and M. Chamecki. “Large-eddy simulation of smooth and rough channel flows using a one-dimensional stochastic wall model,” Comput. Fluids, 230:105135, 2021.


Acoustics#

  • J. A. Medina Méndez, S. Sharma, H. Schmidt, and M. Klein. “Toward the use of a reduced-order and stochastic turbulence model for assessment of far-field sound radiation: Low Mach number jet flows,” Proc. Appl. Math. Mech., 23:e202300186, 2023, (open access).

  • S. Sharma, M. Klein, J. A. Medina Mendez, and L. Ayton. “A theoretical study of self-soise generation in turbulent jets using one-dimensional turbulence and Lighthill’s acoustic analogy,” INTER-NOISE and NOISE-CON Congress and Conference Proceedings, paper ID 268, 2023.

  • S. Sharma, M. Klein, and H. Schmidt. “Features of far-downstream asymptotic velocity fluctuations in a round jet: A one-dimensional turbulence study,” Phys. Fluids, 34:085134, 2022.

  • S. Sharma, M. Klein, and H. Schmidt. “Modelling turbulent jets at high-Reynolds number using one-dimensional turbulence,” AIAA 2021-2104, AIAA AVIATION 2021 FORUM, August 2021.


Other#

  • A.R. Kerstein, T.D. Dreeben. “Prediction of turbulent free shear flow statistics using a simple stochastic model.” Physics of Fluids, 12(2):418-424 (2000).

  • W.T. Ashurst, A.R. Kerstein. “One-Dimensional Turbulence: variable-density formulation and application to mixing layers.” Physics of Fluids, 17:2 (2005).

  • A. Movaghar, M. Linne, M. Herrmann, A.R. Kerstein, M. Oevermann. “Modeling and numerical study of primary breakup under diesel conditions.” International Journal of Multiphase Flow, 98:110-119 (2018).

  • A. Carati, L. Galgani, F. Santolini. “On the energy transfer to small scales in a discrete model of One-Dimensional Turbulence.” Chaos, 19:2 (2019).

  • C. Glawe, M. Klein, H. Schmidt. “Stochastic deconvolution of wall statistics in Reynolds-averaged Navier–Stokes simulations based on one-dimensional turbulence,” Proc. Appl. Math. Mech., 23:e202300055, 2023, (open access).