ODT Publications#
Foundational#
A.R. Kerstein, “One-Dimensional Turbulence: Model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows,” Journal of Fluid Mechanics, 392:277-334 (1999).
A.R. Kerstein, “One-Dimensional Turbulence: vector formulation and application to free shear flows,” Journal of Fluid Mechanics, 447:85-109 (2001).
D.O. Lignell, A.R. Kerstein, G. Sun, E.I. Monson, “Mesh adaption for efficient multiscale implementation of One-Dimensional Turbulence,” Theoretical and Computational Fluid Dynamics, 27(3):273-295 (2013). Accepted paper ©.
D.O. Lignell, V.B. Lansinger, J.A. Medina Méndez, M. Klein, A.R. Kerstein, H. Schmidt, M. Fistler, M. Oevermann, “One-Dimensional Turbulence modeling for cylindrical and spherical flows: model formulation and application,” Theoretical and Computational Fluid Dynamics, 32(4):495-520 (2018). Accepted Paper ©.
Channel and pipe flows#
R.C. Schmidt, A.R. Kerstein, R. McDermott, “ODTLES: A multi-scal model for 3D turbulent flow based on One-Dimensional Turbulence modeling,” Computer Methods in Applied Mechanics and Engineering, 199:865-880 (2010).
F.T. Schulz, C. Glawe, H. Schmidt, A. R. Kerstein, “Toward modeling of CO2 multi-phase flow patterns using a stochastic multi-scale approach,” Environmental Earth Sciences, 70:3739-3748 (2013).
J.A. Medina Méndez, H. Schmidt, D.O. Lignell, “Application of the One-Dimensional Turbulence model to incompressible channel and pipe flow,” submitted to the Journal of Applied Mathematics and Mechanics, May 2019, Preprint.
J.A. Medina Méndez, M. Klein, H. Schmidt, “One-dimensional turbulence investigation of variable density effects due to heat transfer in a low Mach number internal air flow,” International Journal of Heat Fluid Flow, 80:108481 (2019).
J.A. Medina Méndez, M. Klein, H. Schmidt, “The One-Dimensional Turbulence Aspects of Internal Forced Convective Flows,” Proc. WCCM ECCOMAS 2020, 2021. DOI: https://doi.org/10.23967/wccm-eccomas.2020.338.
M. Klein, P.-Y. Tsai, and H. Schmidt. “Stochastic modeling and large-eddy simulation of heated concentric coaxial pipes,” In book: New Results in Numerical and Experimental Fluid Mechanics XIV - Contributions to the 23rd STAB/DGLR Symposium Berlin, Germany 2022, edited by A. Dillmann, G. Heller, E. Krämer, C. Wagner, and J. Weiss. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 154:435–444, Springer, Cham, 2024. Preprint, arXiv. Preprint, BTU webpage.
J. A. Medina Mendez, and H. Schmidt. “Towards the evaluation of heat and mass transfer in pipe flows with cocurrent falling films using One‐Dimensional Turbulence,” Proc. Appl. Math. Mech., 23:e202200271, 2023.
P.-Y. Tsai, H. Schmidt, and M. Klein. “Investigating Reynolds number effects in turbulent concentric coaxial pipe flow using stochastic one-dimensional turbulence modeling,” Proc. Appl Math. Mech., 23:e202300167, 2023, (open access).
P.-Y. Tsai, H. Schmidt, and M. Klein. “Modeling simultaneous momentum and passive scalar transfer in turbulent annular Poiseuille flow,” Proc. Appl Math. Mech., 22:e202200272, 2023, (open access).
Compressible flows#
C.P. Chen, J.H. Liang, T.Y. Gao, X.S. Wu, W.D. Zhao, L. Zhang, “Conservative compressible one-dimensional turbulence formulation and application to high-Reynolds-number compressible turbulent channel flows,” Physics of Fluids, 34:65121 (2022).
T.Y. Gao, H. Schmidt, M. Klein, J.H. Liang, M.B. Sun, C.P. Chen, and Q.D. Guan, “One-dimensional turbulence modeling of compressible flows. I. Conservative Eulerian formulation and application to supersonic channel flow,” Physics of Fluids, 35:35115 (2023).
T.Y. Gao, H. Schmidt, M. Klein, J.H. Liang, M.B. Sun, C.P. Chen, and Q.D. Guan, “One-dimensional turbu- lence modeling of compressible flows II. Full compressible modification and application to shock–turbulence interaction,” Physics of Fluids 35:35116 (2023).
Passive scalars and turbulent mixing#
M. Klein, H. Schmidt, “Stochastic Modeling of Passive Scalar Transport in Turbulent Channel Flows at High Schmidt Numbers,” Proc. TSFP10, 2017. URL.
V. Giddey, D.W. Meyer, P. Jenny. “Modeling Three-Dimensional Scalar Mixing with Forced One-Dimensional Turbulence,” Physics of Fluids, 30:12 (2018).
M. Klein, C. Zenker, H. Schmidt, “Small-scale resolving simulations of the turbulent mixing in confined planar jets using one-dimensional turbulence,” Chemical Engineering Science, 204:186-202 (2019).
M. Klein, C. Zenker, K. Hertha, H. Schmidt, “Modeling One and Two Passive Scalar Mixing in Turbulent Jets Using One-Dimensional Turbulence,” Proc. WCCM ECCOMAS 2020, 2021. DOI.
M. Klein, H. Schmidt, “Stochastic Modeling of Passive Scalars in Turbulent Channel Flows: Predictive Capabilities of One-Dimensional Turbulence,” In: A. Dillmann et al. (Eds.), New Results in Numerical and Experimental Fluid Mechanics XIII, volume 151, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer Nature, Cham, 2021, pp. 47-57. STAB/DGLR Symposium 2020. Preprint.
M. Klein, C. Zenker, T. Starick, and H. Schmidt. “Stochastic modeling of multiple scalar mixing in a three-stream concentric coaxial jet based on one-dimensional turbulence,” Int. J. Heat Fluid Flow, 104:109235, 2023 (open access).
M. Klein, T. Starick, C. Zenker, J. A. Medina Méndez, and Heiko Schmidt. “Reduced order stochastic modeling of turbulent mixing based on conservative baker’s map.” In: Proc. 14th Int. ERCOFTAC Sympos. Eng. Turbul. Model. Measurem. (ETMM14), pp. 613–617, 2023. (Follow the link entitled “Download” to get the full proceedings.)
M. Klein, C. Zenker, T. Starick, and H. Schmidt. “Stochastic modeling of three-scalar mixing in a coaxial jet using one-dimensional turbulence,” In: Proc. TSFP-12, Osaka (online), Japan, July 2022. Session 13C, Jets II, ID 208.
M. Klein, H. Schmidt, and D. O. Lignell. “Stochastic modeling of surface scalar-flux fluctuations in turbulent channel flow using one-dimensional turbulence,” Int. J. Heat Fluid Flow, 93:108889, 2022. In: Special Issue “Wall-bounded Reactive Flows ‘21”. Preprint: arXiv:2111.15359.
Particle flows#
Y. Wu, P. Smith, J. Thornock, G. Yue, J. Zhang. “A novel method for prediction of particle dispersion in a planar jet using ODT model.” AIChE Annual Meeting, Conference Proceedings, URL (2007).
J.R. Schmidt, J.O.L. Wendt, A.R. Kerstein. “Non-equilibrium wall deposition of inertial particles in turbulent flow.” Journal of Statistical Physics, 137(2):233-257 (2009).
G. Sun, D.O. Lignell, J.C. Hewson, C. Gin, “Particle dispersion in homogeneous turbulence using the One-Dimensional Turbulence model,” Physics of Fluids, 26:103301 (2014). Published paper ©.
G. Sun, J.C. Hewson, D.O. Lignell, “Evaluation of stochastic particle dispersion modeling in turbulent round jets,” International Journal of Multiphase Flow, 89:108-122 (2017). Accepted Paper ©
M. Fistler, A.R. Kerstein, S. Wunsch, M. Oevermann. “Turbulence modulation in particle-laden stationary homogeneous shear turbulence using One-Dimensional Turbulence.” Physical Review Fluids, 5:124303 (2020).
M. Fistler, A.R. Kerstein, S. Wunsch, M. Oevermann. “Turbulence modulation in particle-laden stationary homogeneous shear turbulence using One-Dimensional Turbulence.” Physical Review Fluids, 5:124303 (2020).
Buoyant flows#
T.D. Dreeben, A.R. Kerstein. “Simulation of vertical slot convection using `One-Dimensional Turbulence’.” International Journal of Heat and Mass Transfer, 43(20):3823-3834 (2000).
S. Wunsch, A.R. Kerstein, “A stochastic model for high-Rayleigh-number thermal convection,” Journal of Fluid Mechanics, 528:173-205 (2005).
H. Shihn, P.E. DesJardin. “Near-wall modeling of an isothermal vertical wall using One-Dimensional Turbulence.” International Journal of Heat and Mass Transfer, 50(7-8):1314-1327 (2007).
A.J. Ricks, J.C. Hewson, A.R. Kerstein, J.P. Gore, S.R. Tieszen, W.T. Ashurst. “A spatially developing One-Dimensional Turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames.” Combustion Science and Technology, 182(1):60–101 (2010).
E.D. Gonzalez-Juez, A.R. Kerstein, L.H. Shih. “Vertical mixing in homogeneous sheared stratified turbulence: a One-Dimensional-Turbulence study.” Physics of Fluids, 23:5 (2011).
E.D. Gonzalez-Juez, A.R. Kerstein, D.O. Lignell, “Reactive Rayleigh-Taylor turbulent mixing: a One-Dimensional Turbulence study,” Geophysical and Astrophysical Fluid Dynamics, 107:506-525 (2013). Accepted paper ©.
M. Klein, H. Schmidt, D.O. Lignell. “Map-based modeling of high-Rayleigh- number turbulent convection in planar and spherical confinements,” Proc. Conf. Model. Fluid Flow (CMFF’18), J. Vad (Ed.), 2018. ISBN: 978-963313297-5. Accepted paper URL.
M. Klein, H. Schmidt, “Investigating thermal convection at low Prandtl numbers using one-dimensional turbulence,” Proc. TSFP11, 2019. URL.
S. R. G. Polasanapalli, M. Klein, and H. Schmidt. “Towards stochastic subgrid-scale modeling of turbulent thermal convection in an under-resolved off-lattice Boltzmann method.” Proc. Appl. Math. Mech. 23:e202300223, 2023, (open access).
Electrohydrodynamically (EHD) enhanced flows#
J.A. Medina Méndez, H. Schmidt, U. Riebel, “Towards a One-Dimensional Turbulence Approach for Electrohydrodynamic Flows,” Proc. TSFP11, 2019. [URL](http://www.tsfp- conference.org/proceedings/2019/265.pdf).
J.A. Medina Méndez, H. Schmidt, C. Bacher, U. Riebel, “Electrohydrodynamic‐enhanced internal pipe flows from a One‐Dimensional Turbulence perspective,” Proc. Appl. Math. Mech., 20:e202000132 (2020).
M. Klein, H. Schmidt, “Towards a stochastic model for electrohydrodynamic turbulence with application to electrolytes,” Proc. Appl. Math. Mech., 20:e202000128 (2020).
H. Schmidt, J.A. Medina Méndez, M. Klein, “EHD turbulence in channel flows with inhomogeneous electrical fields: a one-dimensional turbulence study,” Proc. WCCM ECCOMAS 2020, 2021. DOI.
M. Klein, J. A. Medina Méndez, and H. Schmidt. “Stochastic modeling of electrohydrodynamically enhanced drag in one-way and fully coupled turbulent Poiseuille and Couette flow,” Technische Mechanik, 43(1):111–127, 2023, (open access).
M. Klein, J. A. Medina Méndez, and H. Schmidt. “Modeling electrohydrodynamically enhanced drag in channel and pipe flows using one-dimensional turbulence,” In: Janos Vad (Ed.), Proc. Conf. Model. Fluid Flow (CMFF’22), 18:82–91, CMFF22-015, 2022. University of Technology and Economics, Department of Fluid Mechanics, Budapest, Hungary. ISBN 978-9634218814.
M. Klein, and H. Schmidt. “Investigating Schmidt number effects in turbulent electroconvection using one-dimensional turbulence,” Proc. Appl. Math. Mech., 21:e202100147, 2021.
J. A. Medina Mendez, C. Bacher, U. Riebel, and H. Schmidt. “Electrohydrodynamically-enhanced drag in a vertical pipe-flow with a concentric electrode: A One-Dimensional Turbulence study,” European Journal of Mechanics - B/Fluids, 95:240-251, 2022.
Fire#
H. Shihn, P.E. DesJardin. “Simulation of vertical wall fires with One-Dimensional Turbulence modeling.” Spring Technical Meeting, The Combustion Institute/Canadian Section, Ontario, Canada, URL (2004).
A.J. Ricks, J.C. Hewson, A.R. Kerstein, J.P. Gore, S.R. Tieszen, W.T. Ashurst. “A spatially developing One-Dimensional Turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames.” Combustion Science and Technology, 182(1):60-101 (2010).
J. An, Y. Jiang, M. Ye, R. Qiu. “One-Dimensional Turbulence simulations and chemical explosive mode analysis for flame suppression mechanism of hydrogen/air flames.” International Journal of Hydrogen Energy, 38(18):7528-7538 (2013).
Y. Jiang, J. An, R. Qiu, Y. Hu, and N. Zhu. “Improved understanding of fire suppression mechanism with an idealized extinguishing agent.” International Journal of Thermal Sciences, 64:22-28 (2013).
E.I. Monson, D.O. Lignell, M.A. Finney, C. Werner, Z. Jozefik, A.R. Kerstein, R.S. Hintze, “Simulation of an ethylene wall fire using the spatially-evolving One-Dimensional Turbulence model,” Fire Technology, Special Issue on Validation and Fire Modelling, 52(1):167-196 (2016). Accepted paper ©.
Combustion#
J.C. Hewson, A.R. Kerstein, “Stochastic simulation of transport and chemical kinetics in turbulent CO/H2/N2 flames,” Combustion Theory and Modelling, 5:669-697 (2001).
J.C. Hewson, A.R. Kerstein, “Local extinction and reignition in nonpremixed turbulent CO/H2/N2 jet flames,” Combustion Science and Technology, 174:35-66 (2002).
B. Ranganath, T. Echekki. “One-Dimensional Turbulence-based closure with extinction and reignition.” Combustion and Flame, 154(1-2):23-46 (2008).
S. Cao, T. Echekki. “A low-dimensional stochastic closure model for combustion large-eddy simulation.” Journal of Turbulence, 9(2):1-35 (2008).
B. Ranganath, T. Echekki. “ODT closure with extinction and reignition in piloted methane-air jet diffusion flame.” Combustion Science Technology, 181:570–596 (2009).
N. Punati, J.C. Sutherland, A.R. Kerstein, E.R. Hawkes, J.H. Chen, “An evaluation of the One-Dimensional Turbulence model: comparison with direct numerical simulations of CO/H2 Jets with extinction and reignition,” Proceedings of the Combustion Institute, 33:1515-1522 (2011).
D.O. Lignell, D.S. Rappleye, “One-Dimensional Turbulence simulation of flame extinction and reignition in planar ethylene jet flames,” Combustion and Flame, 159:2930-2943 (2012). Accepted Paper ©
D.O. Lignell, G.C. Fredline, and A.D. Lewis “Comparison of One-Dimensional Turbulence and direct numerical simulation of soot formation and transport in a nonpremixed ethylene jet flame,” Proceedings of the Combustion Institute, DOI 10.1016/j.proci.2014.05.046 (2014). Accepted paper ©.
L. Zhuo, Y. Jiang, R. Qiu, J. An, W. Xu. “Effects of fuel-side N-2, CO2, H2O dilution on combustion characteristics and NOx formation of syngas turbulent nonpremixed jet flames.” Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 136:6 (2014).
H. Mirgolbabaei, T. Echekki. “The reconstruction of thermo-chemical scalars in combustion from a reduced set of their principal components.” Combustion and Flame, 162(5):1650-1652 (2015).
T. Echekki, H. Mirgolbabaei. “Principal component transport in turbulent combustion: a Posteriori analysis.” Combustion and Flame, 162(5):1919-1933 (2015).
B. Goshayeshi, J.C. Sutherland, “Prediction of oxy-coal flame stand-off using high-fidelity thermochemical models and the One-Dimensional Turbulence model,” Proceedings of the Combustion Institute, 35:2829-2837 (2015).
T. Echekki, S.E. Ahmed. “Autoignition of n-heptane in a turbulent co-flowing jet.” Combustion and Flame, 162(10):3829-3846 (2015)
B. Goshayeshi, J.C. Sutherland. “Prediction of oxy-coal flame stand-off using high-fidelity thermochemical models and the One-Dimensional Turbulence model.” Proceedings of the Combustion Institute, 35(3):2829-2837 (2015).
N. Punati, H. Wang, E.R. Hawkes, J.C. Sutherland, “One-dimensional modeling of turbulent premixed jet flames-comparison to DNS,” Flow, Turbulence and Combustion, 97:913–930 (2016).
L. Wang, Y. Jiang, L. Pan, Y. Xia, R. Qiu. “Lagrangian investigation and chemical explosive mode analysis of extinction and re-ignition in H-2/CO/N-2 syngas non-premixed flame.” International Journal of Hydrogen Energy, 41(8):4820-4830 (2016).
Z. Jozefik, A.R. Kerstein, H. Schmidt. “Simulation of shock-turbulence interaction in non-reactive flow and in turbulent deflagration and detonation regimes using One-Dimensional Turbulence.” Combustion and Flame, 164:53-67 (2016).
A. Abdelsamie, D.O. Lignell, D. Thevenin, “Comparison between ODT and DNS for ignition occurrence in turbulent premixed jet combustion: Safety-relevant applications,” Zeitschrift Für Physikalische Chemie, 231(10):1709-1735, DOI: 10.1515/zpch-2016-0902 (2017). Published Paper. The final publication is available at www.degruyter.com. ©.
L. Wang, Y. Jiang, R. Qiu. “Chemical explosive mode analysis for local reignition scenarios in H-2/N-2 turbulent diffusion flames.” Energy & Fuels, 31(9):9939-9949 (2017).
T. Echekki, S.F. Ahmed. “Turbulence effects on the autoignition of DME in a turbulent co-flowing jet.” Combustion and Flame, 178:70-81 (2017).
J.A Medina Méndez, H. Schmidt, F. Mauss, Z. Jozefik. “Constant volume n-heptane autoignition using One-Dimensional Turbulence.” Combustion and Flame, 190:388-401 (2018).
T. Starick, J. A. Medina Méndez, H. Schmidt, “One-Dimensional Turbulence simulations for reactive flows in open and closed systems,” Technische Mechanik, 39:162-174 (2019).
T. Starick, D. O. Lignell, and H. Schmidt. “Stochastic Modeling of a Lifted Methane/Air Jet Flame with Detailed Chemistry,” Proc. Appl. Math. Mech., 20:e202000316, 2020.
W. Yang, B. Liu, H. Zhang, Y. Zhang, Y. Wu, J. Lyu. “Prediction improvements of ignition characteristics of isolated coal particles with a one-dimensional transient model.” Proceedings of the Combustion Institute, 38(3):4083-4089 (2021).
Code#
Fuel#
A. Movaghar, M. Linne, M. Oevermann, F. Meiselbach, H. Schmidt, A.R. Kerstein. “Numerical investigation of turbulent-jet primary breakup using One-Dimensional Turbulence.” International Journal of Multiphase Flow, 89:241-254 (2017).
K.G. Gupta, T. Echekki. “One-Dimensional Turbulence model simulations of autoignition of hydrogen/carbon monoxide fuel mixtures in a turbulent jet.” Combustion and Flame, 158(2):327-344 (2011).
B.D. Gowda, T. Echekki. “Complex injection strategies for hydrogen-fueled HCCI engines.” Fuel, 97:418-27 (2012).
B.D. Gowda, T. Echekki. “One-Dimensional Turbulence simulations of hydrogen-fueled HCCI combustion.” International Journal of Hydrogen Energy, 37(9):7912-7924 (2012).
T. Echekki, K.G. Gupta. “Hydrogen autoignition in a turbulent jet with preheated co-flow air.” International Journal of Hydrogen Energy, 34(19):8352-8377 (2009).
B. Ranganath, T. Echekki. “ODT closure with extinction and reignition in piloted methane-air jet diffusion flames.” Combustion Science and Technology, 181(4):570-596 (2009).
S. Zhang, T. Echekki. “Stochastic modeling of finite-rate chemistry effects in hdrogen-air turbulent jet diffusion flames with helium dilution.” International Journal of Hydrogen Energy, 33(23):7295-7306 (2008).
B. Ranganath, T. Echekki. “One-Dimensional Turbulence-based closure for turbulent non-premixed flames.” Progress in Computational Fluid Dynamics, 6(7):409-418 (2006).
T. Echekki, A.R. Kerstein, T.D. Dreeben, J.Y. Chen. “`One-Dimensional Turbulence’ simulation of turbulent jet diffusion flames: model formulation and illustrative applications.” Combustion and Flame, 125(3):1083-1105 (2001).
Boundary Layers#
M.M. Fragner, H. Schmidt. “Investigating asymptotic suction boundary layers using a One-Dimensional Stochastic Turbulence model.” Journal of Turbulence, 18(10):899-928 (2017).
Rakhi, M. Klein, J. A. Medina Méndez, H. Schmidt, “One-dimensional turbulence modelling of incompressible temporally developing turbulent boundary layers with comparison to DNS,” Journal of Turbulence, 20:506-543 (2019).
Rakhi, D.O. Lignell, H. Schmidt, “Investigating spatially developing turbulent boundary layers with uniform blowing using a One-Dimensional stochastic Turbulence model,” submitted to Flow, Turbulence and Combustion, May 2020, Preprint.
Rakhi, H. Schmidt, “One-dimensional turbulence: application to incompressible spatially developing turbulent boundary layers,” International Journal of Heat and Fluid Flow, 85:108626 (2020).
C.P. Chen, J.H. Liang, Q.D. Guan, and T.Y. Gao, “Conservative compressible one-dimensional turbulence method and its application in supersonic scalar mixing layer,” Acta Aeronautica et Astronautica Sinica. 42:726364 (2021).
Meteorology#
A.R. Kerstein, S. Wunsch. “Simulation of a stably stratified atmospheric boundary layer using One-Dimensional Turbulence.” Boundary-Layer Meteorology, 118(2):325-356 (2006).
C.K. Kim, S.S. Yum. “A numerical study of sea-fog formation over cold sea surface using a One-Dimensional Turbulence model coupled with the weather research and forecasting model.” Boundary-Layer Meteorology, 143(3):481-505 (2012).
H. Schmidt, A.R. Kerstein, S. Wunsch, R. Nedelec, B.J. Sayler. “Analysis and numerical simulation of a laboratory analog of radiatively induced cloud-top entrainment.” Theoretical and Computational Fluid Dynamics, 27(3-4):377-395 (2013).
S.N. Stechmann. “Multiscale eddy simulation for moist atmospheric convection: preliminary Investigation.” Journal of Computational Physics, 271:99-117 (2014).
B. Goger, M.W. Rotach, A. Gohm, O. Fuhrer, I. Stiperski, A.A.M. Holtslag. “The impact of three-dimensional effects on the simulation of turbulence kinetic energy in a major alpine valley.” Boundary-Layer Meteorology, 168(1):1-27 (2018).
L. S. Freire, and M. Chamecki. “A one-dimensional stochastic model of turbulence within and above plant canopies, Agr. Forest Meteorol., 250–251:9–23, 2018.
M. Klein, Roland E. Maier, and H. Schmidt. “Stochastic modeling of transient neutral and stably-stratified Ekman boundary layers,” Proc. Appl. Math. Mech., 21:e202100146, 2021.
M. Klein, and H. Schmidt. “Exploring stratification effects in stable Ekman boundary layers using a stochastic one-dimensional turbulence model,” Adv. Sci. Res., 19:117–136, 2022, (open access).
L. S. Freire. “Large-eddy simulation of the atmospheric boundary layer with near-wall resolved turbulence,” Bound.-Lay. Meteorol., 184:25–43, 2022.
M. Klein, and H. Schmidt. “Capturing features of turbulent Ekman–Stokes boundary layers with a stochastic modeling approach,” Adv. Sci. Res., 20:55–64, 2023, (open access).
Environment/Ecology#
A.R. Kerstein. “One-Dimensional Turbulence Part 2. Staircases in double-diffusive convection.” Dynamics of Atmospheres and Oceans, 30(1):25-46 (1999).
K. Makinson. “Modeling tidal current profiles and vertical mixing beneath Filchner-Ronne Ice Shelf, Antarctica.” Journal of Physical Oceanography, 32(1):202-215 (2002).
U.T. Skielka, J. Soares, A.P. de Oliveira. “Study of the equatorial Atlantic Ocean mixing layer using a One-Dimensional Turbulence model.” Brazilian Journal of Oceanography, 58:57-69 (2010).
S. Wunsch, A.R. Kerstein. “A model for layer formation in stably stratified turbulence.” Physics of Fluids, 13(3):702-712 (2010).
E.D. Gonzalez-Juez, A.R. Kerstein, D.O. Lignell, “Fluxes across double-diffusive interfaces: a one-dimensional turbulence study,” Journal of Fluid Mechanics, 677:218-254 (2011). Accepted paper ©.
T. Ling, M. Xu, X.Z. Liang, J.X.L. Wang, Y. Noh. “A multilevel ocean mixed layer model resolving the Diurnal Cycle: development and validation.” Journal of Advances in Modeling Earth Systems, 7(4):1680-1692 (2015).
E.R. Maure, J. Ishizaka, H. Aiki, Y. Mino, N. Yoshie, J.I. Goes, H.R. Gomes, H. Tomita. “One-Dimensional Turbulence-ecosystem model reveals the triggers of the spring bloom in mesoscale eddies.” Journal of Geophysical Research-Oceans, 123(9):6841-6860 (2018).
L.S. Freire, M. Chamecki. “A One-Dimensional stochastic model of Turbulence within and above plant canopies.” Agricultural and Forest Meteorology, 250:9-23 (2018).
M.Klein, H.Schmidt, A stochastic modeling strategy for intermittently unstable Ekman boundary layers,” Proceedings in Applied Mathematics and Mechanics, 2021, https://doi.org/10.1002/pamm.202000127.
Computational Approach/Comparison#
A.R. Kerstein. “One-Dimensional Turbulence: a new approach to high-fidelity subgrid closure of turbulent flow simulations.” Computer Physics Communications, 148(1):1-16 (2002).
W.T. Ashurst, A.R. Kerstein, L.M. Pickett, J.B. Ghandhi. “Passive scalar mixing in a spatially developing shear layer: comparison of One-Dimensional Turbulence simulations with experimental results.” Physics of Fluids, 15(2):579-582 (2003).
M. Okamura, H. Mori. “Time correlation functions in a similarity approximation for One-Dimensional Turbulence.” Physical Review E, 79:5,2 (2009).
J.C. Sutherland, N. Punati, A.R. Kerstein. “A unified approach to the various formulations of the One-Dimensional Turbulence model.” Technical Report ICSE100101, The University of Utah Institute for Clean and Secure Energy, URL (2010).
N. Punati, J.C. Sutherland. “Application of an Eulerian One-Dimensional Turbulence model to simulation of turbulent jets.” U.S. Joint Sections of the Combustion Institute, Ann Arbor, MI, URL (2009).
H. Mirgolbabaei, T. Echekki, N. Smaoui. “A nonlinear principal component analysis approach for turbulent combustion composition space.” International Journal of Hydrogen Energy, 39(9):4622-4633 (2014).
B. Goshayeshi, J.C. Sutherland. “A comparative study of thermochemistry models for oxy-coal combustion simulation.” Combustion and Flame, 162(10):4016-4024 (2015).
Z. Jozefik, A.R. Kerstein, H. Schmidt, S. Lyra, H. Kolla, J.H. Chen. “One-Dimensional Turbulence modeling of a turbulent counterflow flame with comparison to DNS.” Combustion and Flame, 162(8):2999-3015 (2015).
A.W. Abboud, B.B. Schroeder, T. Saad, S.T. Smith, D.D. Harris, D.O. Lignell. “A numerical comparison of precipitating turbulent flows between Large-Eddy Simulation and One-Dimensional Turbulence.” AIChE Journal, 61(10):3185-3197 (2015).
H. Grosshans, A. Movaghar, L. Cao, M. Oevermann, R.Z. Szasz, L. Fuchs. “Sensitivity of VOF simulations of the liquid jet breakup to physical and numerical parameters.” Computers & Fluids, 136:312-323 (2016).
N. Punati, H. Wang, E.R. Hawkes, J.C. Sutherland. “One-Dimensional modeling of Turbulent premixed jet Fflames - comparison to DNS.” Flow Turbulence and Combustion, 97(3):913-930 (2016).
R. Ranade, T. Echekki. “A framework for data-based turbulent combustion closure: A Priori validation.” Combustion and Flame, 206:490-505 (2019).
J. A. Medina Mendez, M. González, F. Baena-Moreno, and H. Arellano-Garcia. “CO2 methanation: on the modeling of reacting laminar flows in structured Ni/MgAl2O4 catalysts,” Journal of Physics: Conference Series, 2367:012015, 2022.
LES-ODT#
R.C. Schmidt, A.R. Kerstein, S. Wunsch, V. Nilsen. “Near-wall LES closure based on One-Dimensional Turbulence modeling.” Journal of Computational Physics, 186:317–355 (2003).
R.J. McDermott, A.R. Kerstein, R.C. Schmidt, P.J. Smith. “The ensemble mean limit of the One-Dimensional Turbulence model and application to residual stress closure in finite volume Large-Eddy Simulation.” Journal of Turbulence, 6:N31 (2005).
T. Echekki, J. Park. “The LES-ODT model for turbulent premixed flames.” AIAA-2010-0207, The 48th AIAA Aerospace Sciences Meeting, Orlando, FL, DOI (2010).
J. Park, T. Echekki. “LES-ODT study of turbulent premixed interacting flames.” Combustion and Flame, 159(2):609-620 (2012).
H. Mirgolbabaei, T. Echekki. “A novel principal component analysis-based acceleration scheme for LES-ODT: an a Priori study.” Combustion and Flame, 160(5):898-908 (2013).
S.B. Rejeb and T. Echekki. “Thermal radiation modeling using the LES-ODT framework for turbulent combustion flows.” International Journal of Heat and Mass Transfer, 104:1300-1316 (2017).
A.F. Hoffie, T. Echekki. “A coupled LES-ODT model for spatially-developing turbulent reacting shear layers.” International Journal of Heat and Mass Transfer, 127:458-473 (2018).
Y. Fu, T. Echekki. “Upscaling and downscaling approaches in LES-ODT for turbulent combustion flows.” International Journal for Multiscale Computational Engineering, 16(1):45-76 (2018).
C. Glawe, J. A. Medina Méndez, H. Schmidt, “IMEX based Multi-Scale Time Advancement in ODTLES,” ZAMM, 98:1907-1923 (2018).
J. A. Medina Mendez, C. Glawe, T. Starick, M. S. Schöps, and H. Schmidt. “IMEX-ODTLES: A multi-scale and stochastic approach for highly turbulent flows,” Proc. Appl. Math. Mech., 19:e201900433, 2019.
L. S.Freire and M. Chamecki. “Large-eddy simulation of smooth and rough channel flows using a one-dimensional stochastic wall model,” Comput. Fluids, 230:105135, 2021.
Acoustics#
J. A. Medina Méndez, S. Sharma, H. Schmidt, and M. Klein. “Toward the use of a reduced-order and stochastic turbulence model for assessment of far-field sound radiation: Low Mach number jet flows,” Proc. Appl. Math. Mech., 23:e202300186, 2023, (open access).
S. Sharma, M. Klein, J. A. Medina Mendez, and L. Ayton. “A theoretical study of self-soise generation in turbulent jets using one-dimensional turbulence and Lighthill’s acoustic analogy,” INTER-NOISE and NOISE-CON Congress and Conference Proceedings, paper ID 268, 2023.
S. Sharma, M. Klein, and H. Schmidt. “Features of far-downstream asymptotic velocity fluctuations in a round jet: A one-dimensional turbulence study,” Phys. Fluids, 34:085134, 2022.
S. Sharma, M. Klein, and H. Schmidt. “Modelling turbulent jets at high-Reynolds number using one-dimensional turbulence,” AIAA 2021-2104, AIAA AVIATION 2021 FORUM, August 2021.
Other#
A.R. Kerstein, T.D. Dreeben. “Prediction of turbulent free shear flow statistics using a simple stochastic model.” Physics of Fluids, 12(2):418-424 (2000).
W.T. Ashurst, A.R. Kerstein. “One-Dimensional Turbulence: variable-density formulation and application to mixing layers.” Physics of Fluids, 17:2 (2005).
A. Movaghar, M. Linne, M. Herrmann, A.R. Kerstein, M. Oevermann. “Modeling and numerical study of primary breakup under diesel conditions.” International Journal of Multiphase Flow, 98:110-119 (2018).
A. Carati, L. Galgani, F. Santolini. “On the energy transfer to small scales in a discrete model of One-Dimensional Turbulence.” Chaos, 19:2 (2019).
C. Glawe, M. Klein, H. Schmidt. “Stochastic deconvolution of wall statistics in Reynolds-averaged Navier–Stokes simulations based on one-dimensional turbulence,” Proc. Appl. Math. Mech., 23:e202300055, 2023, (open access).